Coexistence of Autosomal Dominant Polycystic Kidney Disease and Hereditary Distal Renal Tubular Acidosis in a Child: A Very Rare Case Report and Literature Review

Coexistence of ADPCKD and dRTA


Abstract views: 158 / PDF downloads: 80

Authors

DOI:

https://doi.org/10.5281/zenodo.11215949

Keywords:

Polycystic kidney disease, PKD1, PKD2, SLC4A1, renal tubular acidosis, mutations

Abstract

Autosomal dominant polycystic kidney disease (ADPKD) is a common inherited cystic kidney disease that exhibits a variety of clinical manifestations due to multiple mutation types and a variety of penetration powers.

Renal tubular acidosis (RTA) is a group of transport defects secondary to reduced proximal tubular reabsorption of bicarbonate (HCO3-), the distal secretion of protons (hydrogen ion, H+), or both, resulting in impaired capacity for net acid excretion and persistent hyperchloremic metabolic acidosis with a normal anion gap (AG) 12±2 mmol/L. The above conditions are either secondary to other causes or primary, with or without known genetic defects.

ADPKD rarely can cause RTA, however, the potential heritage interactions of ADPKD and distal renal tubular acidosis (dRTA) mutations have not yet been identified. As far as we know, dRTA and ADPKD have not been reported in the same patient. Here we present a 4-year-old patient who was diagnosed with ADPKD with PKD1 (NM_001009944.3): c.11014C>T (p.Arg3672Trp) heterozygous and type1 RTA (dRTA) with SLC4A1 (NM_00342.4): c.1765C>T (p.Arg589Cys) heterozygous mutation, but no sign of cystic kidney disease in his mother despite having the same PKD1 mutation. Although his father has incomplete dRTA (metabolic acidosis was absent, however urinary pH was 7 and history of recurrent kidney stones.) having the same SLC4A1 mutation. The child is being treated with 5–8 mEq/kg of citrate, and cyst growth seems to have stopped following a 2-year follow-up. The case highlights the importance of "secondary hits" or the coexistence of different abnormalities in the development of cystic formation in ADPKD.

References

The polycystic kidney disease 1 gene encodes a 14 kb transcript and lies within a duplicated region on chromosome 16. The European Polycystic Kidney Disease Consortium [published correction appears in Cell 1995 Jun 30;81(7):following 1170] [published correction appears in Cell. 1994 Aug 26;78(4):725]. Cell. 1994;77(6):881-894. doi:10.1016/0092-8674(94)90137-6

Mochizuki T, Wu G, Hayashi T, et al. PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science. 1996;272(5266):1339-1342. doi:10.1126/science.272.5266.1339

Magistroni R, He N, Wang K, et al. Genotype-renal function correlation in type 2 autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 2003;14(5):1164-1174. doi:10.1097/01.asn.0000061774.90975.25

Reed B, McFann K, Kimberling WJ, et al. Presence of de novo mutations in autosomal dominant polycystic kidney disease patients without family history. Am J Kidney Dis. 2008;52(6):1042-1050. doi:10.1053/j.ajkd.2008.05.015

Grantham JJ. Clinical practice. Autosomal dominant polycystic kidney disease. N Engl J Med. 2008;359(14):1477-1485. doi:10.1056/NEJMcp0804458

De Rechter S, Breysem L, Mekahli D. Is Autosomal Dominant Polycystic Kidney Disease Becoming a Pediatric Disorder?. Front Pediatr. 2017;5:272. Published 2017 Dec 20. doi:10.3389/fped.2017.00272

Harris PC, Torres VE. Polycystic Kidney Disease, Autosomal Dominant. 2002 Jan 10 [Updated 2022 Sep 29]. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2024. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1246/

Gómez-Conde S, García-Castaño A, Aguirre M, et al. Molecular aspects and long-term outcome of patients with primary distal renal tubular acidosis. Pediatr Nephrol. 2021;36(10):3133-3142. doi:10.1007/s00467-021-05066-z

Besouw MTP, Bienias M, Walsh P, et al. Clinical and molecular aspects of distal renal tubular acidosis in children [published correction appears in Pediatr Nephrol. 2017 Jun;32(6):1095]. Pediatr Nephrol. 2017;32(6):987-996. doi:10.1007/s00467-016-3573-4

Palazzo V, Provenzano A, Becherucci F, et al. The genetic and clinical spectrum of a large cohort of patients with distal renal tubular acidosis. Kidney Int. 2017;91(5):1243-1255. doi:10.1016/j.kint.2016.12.017

Mohebbi N, Wagner CA. Pathophysiology, diagnosis and treatment of inherited distal renal tubular acidosis. J Nephrol. 2018;31(4):511-522. doi:10.1007/s40620-017-0447-1

Watanabe T. Improving outcomes for patients with distal renal tubular acidosis: recent advances and challenges ahead. Pediatric Health Med Ther. 2018;9:181-190. Published 2018 Dec 12. doi:10.2147/PHMT.S174459

Trepiccione F, Prosperi F, de la Motte LR, et al. New Findings on the Pathogenesis of Distal Renal Tubular Acidosis. Kidney Dis (Basel). 2017;3(3):98-105. doi:10.1159/000478781

Karet FE, Gainza FJ, Györy AZ, et al. Mutations in the chloride-bicarbonate exchanger gene AE1 cause autosomal dominant but not autosomal recessive distal renal tubular acidosis. Proc Natl Acad Sci U S A. 1998;95(11):6337-6342. doi:10.1073/pnas.95.11.6337

Guo W, Ji P, Xie Y. Genetic Diagnosis and Treatment of Inherited Renal Tubular Acidosis. Kidney Dis (Basel). 2023;9(5):371-383. Published 2023 Jun 20. doi:10.1159/000531556

Tanphaichitr VS, Sumboonnanonda A, Ideguchi H, et al. Novel AE1 mutations in recessive distal renal tubular acidosis. Loss-of-function is rescued by glycophorin A. J Clin Invest. 1998;102(12):2173-2179. doi:10.1172/JCI4836

Boyer O, Manso-Silván MA, Joukoff S, Berthaud R, Guittet C. Improved growth of a child with primary distal renal tubular acidosis after switching from a conventional alkalizing treatment to a new prolonged-release formulation containing potassium citrate and potassium bicarbonate: lessons for the clinical nephrologist. J Nephrol. 2022;35(8):2119-2122. doi:10.1007/s40620-022-01306-z

Ferreira FM, Watanabe EH, Onuchic LF. Polycystins and Molecular Basis of Autosomal Dominant Polycystic Kidney Disease. In: Li X, ed. Polycystic Kidney Disease. Brisbane (AU): Codon Publications; November 2015.

Bastos AP, Onuchic LF. Molecular and cellular pathogenesis of autosomal dominant polycystic kidney disease. Braz J Med Biol Res. 2011;44(7):606-617. doi:10.1590/s0100-879x2011007500068

Terryn S, Ho A, Beauwens R, Devuyst O. Fluid transport and cystogenesis in autosomal dominant polycystic kidney disease. Biochim Biophys Acta. 2011;1812(10):1314-1321. doi:10.1016/j.bbadis.2011.01.011

Wilson PD. Apico-basal polarity in polycystic kidney disease epithelia. Biochim Biophys Acta. 2011;1812(10):1239-1248. doi:10.1016/j.bbadis.2011.05.008

Schlevogt B, Schlieper V, Krader J, et al. A SEC61A1 variant is associated with autosomal dominant polycystic liver disease. Liver Int. 2023;43(2):401-412. doi:10.1111/liv.15493

Zhang Z, Bai H, Blumenfeld J, et al. Detection of PKD1 and PKD2 Somatic Variants in Autosomal Dominant Polycystic Kidney Cyst Epithelial Cells by Whole-Genome Sequencing. J Am Soc Nephrol. 2021;32(12):3114-3129. doi:10.1681/ASN.2021050690

Rossetti S, Kubly VJ, Consugar MB, et al. Incompletely penetrant PKD1 alleles suggest a role for gene dosage in cyst initiation in polycystic kidney disease [published correction appears in Kidney Int. 2009 Jun;75(12):1359] [published correction appears in Kidney Int. 2010 Feb;77(4):368. Niaudet, W Patrick [corrected to Niaudet, Patrick]] [published correction appears in Kidney Int. 2009 Jun 2;75(12):1359]. Kidney Int. 2009;75(8):848-855. doi:10.1038/ki.2008.686

Hopp K, Ward CJ, Hommerding CJ, et al. Functional polycystin-1 dosage governs autosomal dominant polycystic kidney disease severity. J Clin Invest. 2012;122(11):4257-4273. doi:10.1172/JCI64313

Bruce LJ, Cope DL, Jones GK, et al. Familial distal renal tubular acidosis is associated with mutations in the red cell anion exchanger (Band 3, AE1) gene. J Clin Invest. 1997;100(7):1693-1707. doi:10.1172/JCI119694

Yang M, Sheng Q, Ge S, et al. Mutations and clinical characteristics of dRTA caused by SLC4A1 mutations: Analysis based on published patients. Front Pediatr. 2023;11:1077120. Published 2023 Jan 26. doi:10.3389/fped.2023.1077120

More TA, Kedar PS. Genotypic analysis of SLC4A1 A858D mutation in Indian population associated with distal renal tubular Acidosis (dRTA) coupled with hemolytic anemia. Gene. 2021;769:145241. doi:10.1016/j.gene.2020.145241

Shmukler BE, Kedar PS, Warang P, et al. Hemolytic anemia and distal renal tubular acidosis in two Indian patients homozygous for SLC4A1/AE1 mutation A858D. Am J Hematol. 2010;85(10):824-828. doi:10.1002/ajh.21836

Liu SC, Jarolim P, Rubin HL, et al. The homozygous state for the band 3 protein mutation in Southeast Asian Ovalocytosis may be lethal. Blood. 1994;84(10):3590-3591.

Kager L, Bruce LJ, Zeitlhofer P, et al. Band 3 nullVIENNA , a novel homozygous SLC4A1 p.Ser477X variant causing severe hemolytic anemia, dyserythropoiesis and complete distal renal tubular acidosis. Pediatr Blood Cancer. 2017;64(3):10.1002/pbc.26227. doi:10.1002/pbc.26227

Cheidde L, Vieira TC, Lima PR, Saad ST, Heilberg IP. A novel mutation in the anion exchanger 1 gene is associated with familial distal renal tubular acidosis and nephrocalcinosis. Pediatrics. 2003;112(6 Pt 1):1361-1367. doi:10.1542/peds.112.6.1361

Downloads

Published

2024-05-19

How to Cite

Gök, F., Demir, M. E., Jones, O., & Bardak Demir, S. (2024). Coexistence of Autosomal Dominant Polycystic Kidney Disease and Hereditary Distal Renal Tubular Acidosis in a Child: A Very Rare Case Report and Literature Review: Coexistence of ADPCKD and dRTA. Journal of European Internal Medicine Professionals, 2(2). https://doi.org/10.5281/zenodo.11215949

Most read articles by the same author(s)