Exosomes: Emerging Tools in Diagnostic and Therapeutic Applications—Challenges and Future Prospects
Exosome Therapy
Abstract views: 129 / PDF downloads: 35
DOI:
https://doi.org/10.5281/zenodo.13338077Keywords:
Exosome, diagnostic biomarkers, therapeutic delivery, cancer, regenerative medicineAbstract
Exosomes, nanoscale extracellular vesicles secreted by various cell types, have significant diagnostic and therapeutic potential, as accumulating evidence highlights their critical role in intercellular communication and therapeutic applications. This study provides a comprehensive overview of exosome biogenesis, their biological functions, and the mechanisms through which they influence pathological processes, particularly in cancer and cardiovascular diseases. The therapeutic potential of exosomes is explored in depth, highlighting their application in drug delivery, gene therapy, and regenerative medicine. Furthermore, the study discusses recent advances in engineering exosomes for enhanced therapeutic efficacy, including the development of strategies for targeted delivery and overcoming biological barriers. The dual role of exosomes in cancer biology—both as facilitators of tumor progression and as tools for therapy—is also elaborated upon, providing insights into their complex nature. Finally, the review addresses the challenges and future perspectives in exosome research, emphasizing the need for standardized protocols and further clinical trials to fully realize the potential of exosome-based therapies.
References
Zhang Y, Bi J, Huang J, Tang Y, Du S, Li P. Exosome: A Review of Its Classification, Isolation Techniques, Storage, Diagnostic and Targeted Therapy Applications. Int J Nanomedicine. 2020 Sep 22;15:6917-6934. doi: 10.2147/IJN.S264498. PMID: 33061359; PMCID: PMC7519827.
Li J, Zhang Y, Dong PY, Yang GM, Gurunathan S. A comprehensive review on the composition, biogenesis, purification, and multifunctional role of exosome as delivery vehicles for cancer therapy. Biomed Pharmacother. 2023 Sep;165:115087. doi: 10.1016/j.biopha.2023.115087. Epub 2023 Jun 29. PMID: 37392659.
Rajput A, Varshney A, Bajaj R, Pokharkar V. Exosomes as New Generation Vehicles for Drug Delivery: Biomedical Applications and Future Perspectives. Molecules. 2022 Oct 27;27(21):7289. doi: 10.3390/molecules27217289. PMID: 36364116; PMCID: PMC9658823.
Bei Y, Yu P, Cretoiu D, Cretoiu SM, Xiao J. Exosomes-Based Biomarkers for the Prognosis of Cardiovascular Diseases. Adv Exp Med Biol. 2017;998:71-88. doi: 10.1007/978-981-10-4397-0_5. PMID: 28936733.
Liu Q, Piao H, Wang Y, Zheng D, Wang W. Circulating exosomes in cardiovascular disease: Novel carriers of biological information. Biomed Pharmacother. 2021 Mar;135:111148. doi: 10.1016/j.biopha.2020.111148. Epub 2021 Jan 4. PMID: 33412387.
Xiong M, Chen Z, Tian J, Peng Y, Song D, Zhang L, Jin Y. Exosomes derived from programmed cell death: mechanism and biological significance. Cell Commun Signal. 2024 Mar 1;22(1):156. doi: 10.1186/s12964-024-01521-0. PMID: 38424607; PMCID: PMC10905887.
Dai Y, Wang S, Chang S, Ren D, Shali S, Li C, Yang H, Huang Z, Ge J. M2 macrophage-derived exosomes carry microRNA-148a to alleviate myocardial ischemia/reperfusion injury via inhibiting TXNIP and the TLR4/NF-κB/NLRP3 inflammasome signaling pathway. J Mol Cell Cardiol. 2020 May;142:65-79. doi: 10.1016/j.yjmcc.2020.02.007. Epub 2020 Feb 20. PMID: 32087217.
Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol. 2005 Feb 10;23(5):1011-27. doi: 10.1200/JCO.2005.06.081. Epub 2004 Dec 7. PMID: 15585754.
Katoh M. Therapeutics targeting angiogenesis: genetics and epigenetics, extracellular miRNAs and signaling networks (Review). Int J Mol Med. 2013 Oct;32(4):763-7. doi: 10.3892/ijmm.2013.1444. Epub 2013 Jul 16. PMID: 23863927; PMCID: PMC3812243.
Mashouri L, Yousefi H, Aref AR, Ahadi AM, Molaei F, Alahari SK. Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol Cancer. 2019 Apr 2;18(1):75. doi: 10.1186/s12943-019-0991-5. PMID: 30940145; PMCID: PMC6444571.
Mastronikolis NS, Kyrodimos E, Spyropoulou D, Delides A, Giotakis E, Piperigkou Z, Karamanos NK. The Role of Exosomes in Epithelial-to-Mesenchymal Transition and Cell Functional Properties in Head and Neck Cancer. Cancers (Basel). 2023 Apr 5;15(7):2156. doi: 10.3390/cancers15072156. PMID: 37046817; PMCID: PMC10093122.
Wu Y, Fu H, Hao J, Yang Z, Qiao X, Li Y, Zhao R, Lin T, Wang Y, Wang M. Tumor-derived exosomal PD-L1: a new perspective in PD-1/PD-L1 therapy for lung cancer. Front Immunol. 2024 Mar 18;15:1342728. doi: 10.3389/fimmu.2024.1342728. PMID: 38562933; PMCID: PMC10982384.
Whiteside TL. Immune modulation of T-cell and NK (natural killer) cell activities by TEXs (tumour-derived exosomes). Biochem Soc Trans. 2013 Feb 1;41(1):245-51. doi: 10.1042/BST20120265. PMID: 23356291; PMCID: PMC3721347.
Krylova SV, Feng D. The Machinery of Exosomes: Biogenesis, Release, and Uptake. Int J Mol Sci. 2023;24(2):1337. Published 2023 Jan 10. doi:10.3390/ijms24021337
Winter V, Hauser MT. Exploring the ESCRTing machinery in eukaryotes. Trends Plant Sci. 2006;11(3):115-123. doi:10.1016/j.tplants.2006.01.008
Hurwitz SN, Conlon MM, Rider MA, Brownstein NC, Meckes DG Jr. Nanoparticle analysis sheds budding insights into genetic drivers of extracellular vesicle biogenesis. J Extracell Vesicles. 2016;5:31295. Published 2016 Jul 13. doi:10.3402/jev.v5.31295
Kajimoto T, Okada T, Miya S, Zhang L, Nakamura S. Ongoing activation of sphingosine 1-phosphate receptors mediates maturation of exosomal multivesicular endosomes. Nat Commun. 2013;4:2712. doi:10.1038/ncomms3712
Lohajová Behulová R, Bugalová A, Bugala J, Struhárňanská E, Šafranek M, Juráš I. Circulating exosomal miRNAs as a promising diagnostic biomarker in cancer. Physiol Res. 2023;72(S3):S193-S207. doi:10.33549/physiolres.935153
Cao J, Yan Q. Cancer Epigenetics, Tumor Immunity, and Immunotherapy. Trends Cancer. 2020;6(7):580-592. doi:10.1016/j.trecan.2020.02.003
Iorio MV, Croce CM. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review [published correction appears in EMBO Mol Med. 2017 Jun;9(6):852. doi: 10.15252/emmm.201707779]. EMBO Mol Med. 2012;4(3):143-159. doi:10.1002/emmm.201100209
Wang X, Tian L, Lu J, Ng IO. Exosomes and cancer - Diagnostic and prognostic biomarkers and therapeutic vehicle. Oncogenesis. 2022;11(1):54. Published 2022 Sep 15. doi:10.1038/s41389-022-00431-5
Xue X, Liu Y, Wang Y, et al. MiR-21 and MiR-155 promote non-small cell lung cancer progression by downregulating SOCS1, SOCS6, and PTEN. Oncotarget. 2016;7(51):84508-84519. doi:10.18632/oncotarget.13022
Wang S, Zeng Y, Zhou JM, et al. MicroRNA-1246 promotes growth and metastasis of colorectal cancer cells involving CCNG2 reduction. Mol Med Rep. 2016;13(1):273-280. doi:10.3892/mmr.2015.4557
Roush S, Slack FJ. The let-7 family of microRNAs. Trends Cell Biol. 2008;18(10):505-516. doi:10.1016/j.tcb.2008.07.007
Zhao B, Han H, Chen J, et al. MicroRNA let-7c inhibits migration and invasion of human non-small cell lung cancer by targeting ITGB3 and MAP4K3. Cancer Lett. 2014;342(1):43-51. doi:10.1016/j.canlet.2013.08.030
Huber CC, Wang H. Pathogenic and therapeutic role of exosomes in neurodegenerative disorders. Neural Regen Res. 2024;19(1):75-79. doi:10.4103/1673-5374.375320
Perez-Gonzalez R, Gauthier SA, Kumar A, Levy E. The exosome secretory pathway transports amyloid precursor protein carboxyl-terminal fragments from the cell into the brain extracellular space. J Biol Chem. 2012;287(51):43108-43115. doi:10.1074/jbc.M112.404467
Fiandaca MS, Kapogiannis D, Mapstone M, et al. Identification of preclinical Alzheimer's disease by a profile of pathogenic proteins in neurally derived blood exosomes: A case-control study. Alzheimers Dement. 2015;11(6):600-7.e1. doi:10.1016/j.jalz.2014.06.008
Zheng H, Xie Z, Zhang X, et al. Investigation of α-Synuclein Species in Plasma Exosomes and the Oligomeric and Phosphorylated α-Synuclein as Potential Peripheral Biomarker of Parkinson's Disease. Neuroscience. 2021;469:79-90. doi:10.1016/j.neuroscience.2021.06.033
Suk TR, Rousseaux MWC. The role of TDP-43 mislocalization in amyotrophic lateral sclerosis. Mol Neurodegener. 2020;15(1):45. Published 2020 Aug 15. doi:10.1186/s13024-020-00397-1
Baruah H, Sarma A, Basak D, Das M. Exosome: From biology to drug delivery. Drug Deliv Transl Res. 2024;14(6):1480-1516. doi:10.1007/s13346-024-01515-y
Koh HB, Kim HJ, Kang SW, Yoo TH. Exosome-Based Drug Delivery: Translation from Bench to Clinic. Pharmaceutics. 2023;15(8):2042. Published 2023 Jul 29. doi:10.3390/pharmaceutics15082042
Duan L, Xu L, Xu X, et al. Exosome-mediated delivery of gene vectors for gene therapy. Nanoscale. 2021;13(3):1387-1397. doi:10.1039/d0nr07622h
Grant EV. FDA Regulation of Clinical Applications of CRISPR-CAS Gene-Editing Technology. Food Drug Law J. 2016;71(4):608-633.
Hudry E, Martin C, Gandhi S, et al. Exosome-associated AAV vector as a robust and convenient neuroscience tool [published correction appears in Gene Ther. 2016 Nov;23(11):819. doi: 10.1038/gt.2016.65]. Gene Ther. 2016;23(4):380-392. doi:10.1038/gt.2016.11
Liang Y, Xu X, Li X, et al. Chondrocyte-Targeted MicroRNA Delivery by Engineered Exosomes toward a Cell-Free Osteoarthritis Therapy [published correction appears in ACS Appl Mater Interfaces. 2021 Dec 15;13(49):59591. doi: 10.1021/acsami.1c21472]. ACS Appl Mater Interfaces. 2020;12(33):36938-36947. doi:10.1021/acsami.0c10458
Kim SM, Yang Y, Oh SJ, Hong Y, Seo M, Jang M. Cancer-derived exosomes as a delivery platform of CRISPR/Cas9 confer cancer cell tropism-dependent targeting. J Control Release. 2017;266:8-16. doi:10.1016/j.jconrel.2017.09.013
Muthu S, Bapat A, Jain R, Jeyaraman N, Jeyaraman M. Exosomal therapy-a new frontier in regenerative medicine. Stem Cell Investig. 2021;8:7. Published 2021 Apr 2. doi:10.21037/sci-2020-037
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2024 Oktay Bağdatoğlu, Sedat Gözel
This work is licensed under a Creative Commons Attribution 4.0 International License.