Association Between Peritoneal Transport Changes and Arterial Stiffness Parameters in Peritoneal Dialysis Patients
Arterial Stiffness in Peritoneal Dialysis Patients
DOI:
https://doi.org/10.5281/zenodo.17410217Keywords:
Peritoneal Dialysis, Peritoneal Equilibration Test (PET), Vascular Stiffness, Augmentation Index (AIx)Abstract
Background: Alterations in peritoneal membrane transport characteristics are common in long-term peritoneal dialysis (PD) patients and may reflect underlying microvascular dysfunction. Such changes are commonly associated with peritonitis episodes, prolonged use of glucose-based dialysate, and microvascular injury to the peritoneal membrane, reflecting structural and functional deterioration of the peritoneum. Arterial stiffness, particularly measured via augmentation index (AIx) and pulse wave velocity (PWV), is a known morbidity and closely related with macro and microvascular disease in this population. However, the relationship between longitudinal changes in peritoneal transport and arterial stiffness remains unclear.
Methods: This retrospective observational cohort study included all adult patients who had initiated PD and underwent a baseline peritoneal equilibration test (PET), with a follow-up duration of at least two years. AIx and PWV were measured in all participants using a non-invasive method. Patients were categorized into two groups based on the stability of their PET classification: stable PET vs. changed PET. Demographic, clinical, laboratory, and arterial stiffness parameters (PWV and AIx) were compared between groups.
Results: There were no significant differences in age, sex, comorbidities, laboratory values, or dialysis and adequacy measures between the two groups. PWV values were comparable (9.3 ± 2.1 m/s vs. 9.3 ± 1.9 m/s; p = 0.90). However, the AIx was significantly higher in the changed PET group compared to the stable group (30.6 ± 10.2 vs. 23.0 ± 10.6; p = 0.02).
Conclusion: The findings indicate an associative relationship between peritoneal transport changes and increased small artery stiffness. AIx may serve as a sensitive, non-invasive indicator of microvascular alterations in PD patients. These associations should be interpreted cautiously, and prospective studies are warranted to confirm the temporal and mechanistic links.
References
Morelle J, Stachowska-Pietka J, Öberg C, et al. ISPD recommendations for the evaluation of peritoneal membrane dysfunction in adults: Classification, measurement, interpretation and rationale for intervention. Perit Dial Int. 2021;41(4):352-372. doi:10.1177/0896860820982218
Davies SJ, Krediet RT. Long-Term Peritoneal Dialysis. In: Khanna R, Krediet RT, eds. Nolph and Gokal’s Textbook of Peritoneal Dialysis. Springer; 2023. doi:10.1007/978-3-030-62087-5_44
Krediet RT. Ultrafiltration Failure Is a Reflection of Peritoneal Alterations in Patients Treated With Peritoneal Dialysis. Front Physiol. 2018;9:1815. Published 2018 Dec 20. doi:10.3389/fphys.2018.01815
Schwenger V, Morath C, Salava A, et al. Damage to the peritoneal membrane by glucose degradation products is mediated by the receptor for advanced glycation end-products. J Am Soc Nephrol. 2006;17(1):199-207. doi:10.1681/ASN.2005020155
Zhao H, Zhang HL, Jia L. High glucose dialysate-induced peritoneal fibrosis: Pathophysiology, underlying mechanisms and potential therapeutic strategies. Biomed Pharmacother. 2023;165:115246. doi:10.1016/j.biopha.2023.115246
Szeto CC, Kwan BC, Chow KM, et al. Peritoneal membrane function and cardiovascular disease in peritoneal dialysis. Perit Dial Int. 2008;28(Suppl 3):S108–S112.
Krediet RT. Physiology of peritoneal dialysis; pathophysiology in long-term patients. Front Physiol. 2024;15:1322493. Published 2024 Aug 13. doi:10.3389/fphys.2024.1322493
Davies SJ. Longitudinal relationship between solute transport and ultrafiltration capacity in peritoneal dialysis patients. Kidney Int. 2004;66(6):2437-2445. doi:10.1111/j.1523-1755.2004.66021.x
Smit W, Krediet RT. Ultrafiltration Failure. In: Khanna R, Krediet RT, eds. Nolph and Gokal’s Textbook of Peritoneal Dialysis. Springer; 2022. doi:10.1007/978-3-319-90760-4_17-1
Chou YH, Chen YT, Chen JY, Tarng DC, Lin CC, Li SY. Baseline Peritoneal Membrane Transport Characteristics Are Associated with Peritonitis Risk in Incident Peritoneal Dialysis Patients. Membranes (Basel). 2022;12(3):276. Published 2022 Feb 28. doi:10.3390/membranes12030276
Sipahioglu MH, Kucuk H, Unal A, et al. Impact of arterial stiffness on adverse cardiovascular outcomes and mortality in peritoneal dialysis patients. Perit Dial Int. 2012;32(1):73-80. doi:10.3747/pdi.2010.00186
Bao W, Wang F, Tang W. Aortic-Brachial Stiffness Mismatch and Mortality in Peritoneal Dialysis Patients. Kidney Blood Press Res. 2019;44(1):123-132. doi:10.1159/000498876
Blacher J, Guerin AP, Pannier B, Marchais SJ, Safar ME, London GM. Impact of aortic stiffness on survival in end-stage renal disease. Circulation. 1999;99(18):2434-2439. doi:10.1161/01.cir.99.18.2434
Mackenzie IS, Wilkinson IB, Cockcroft JR. Assessment of arterial stiffness in clinical practice. QJM. 2002;95(2):67-74. doi:10.1093/qjmed/95.2.67
DeLoach SS, Townsend RR. Vascular stiffness: its measurement and significance for epidemiologic and outcome studies. Clin J Am Soc Nephrol. 2008;3(1):184-192. doi:10.2215/CJN.03340807
Zieman SJ, Melenovsky V, Kass DA. Mechanisms, pathophysiology, and therapy of arterial stiffness. Arterioscler Thromb Vasc Biol. 2005;25(5):932-943. doi:10.1161/01.ATV.0000160548.78317.29
Nakae I, Matsuo S, Matsumoto T, Mitsunami K, Horie M. Augmentation index and pulse wave velocity as indicators of cardiovascular stiffness. Angiology. 2008;59(4):421-426. doi:10.1177/0003319707306299
Nürnberger J, Keflioglu-Scheiber A, Opazo Saez AM, Wenzel RR, Philipp T, Schäfers RF. Augmentation index is associated with cardiovascular risk. J Hypertens. 2002;20(12):2407-2414. doi:10.1097/00004872-200212000-00020
Vongsanim S, Davenport A. The association between peri-dialytic pulse wave velocity measurements and hemodialysis patient mortality. Hemodial Int. 2021;25(1):71-77. doi:10.1111/hdi.12874
Janner JH, Godtfredsen NS, Ladelund S, Vestbo J, Prescott E. Aortic augmentation index: reference values in a large unselected population by means of the SphygmoCor device. Am J Hypertens. 2010;23(2):180-185. doi:10.1038/ajh.2009.234
Sági B, Peti A, Lakatos O, et al. Pro- and anti-inflammatory factors, vascular stiffness and outcomes in chronic hemodialysis patients. Physiol Int. 2020;107(2):256-266. Published 2020 Jul 2. doi:10.1556/2060.2020.00026
Sengul E, et al. Evaluation of arterial stiffness and its relationship with peritoneal transport characteristics in patients with metabolic syndrome undergoing peritoneal dialysis. Turk J Nephrol. 2020;29(1):52–58.
Wang AY-M, et al. Cardiovascular risk profiling in peritoneal dialysis patients. Semin Nephrol. 2008;28(2):191–197.
Vriese AS, Tilton RG, Stephan CC, Lameire NH. Vascular endothelial growth factor is essential for hyperglycemia-induced structural and functional alterations of the peritoneal membrane. J Am Soc Nephrol. 2001;12(8):1734-1741. doi:10.1681/ASN.V1281734
Kariya T, Nishimura H, Mizuno M, et al. TGF-β1-VEGF-A pathway induces neoangiogenesis with peritoneal fibrosis in patients undergoing peritoneal dialysis. Am J Physiol Renal Physiol. 2018;314(2):F167-F180. doi:10.1152/ajprenal.00052.2017
Sheng L, Shan Y, Dai H, et al. Intercellular communication in peritoneal dialysis. Front Physiol. 2024;15:1331976. Published 2024 Feb 8. doi:10.3389/fphys.2024.1331976
Korucu B, Deger SM, Yeter H, et al. Association of longitudinal high-sensitive C-reactive protein levels with changing membrane characteristics in peritoneal dialysis. Artif Organs. 2023;47(3):547-553. doi:10.1111/aor.14438
Koyuncu S, Sipahioğlu H, Karakukcu C, İçaçan G, Biçer NS, Kocyigit I. The relationship between changes in peritoneal permeability with CA-125 and HIF-1α. Ther Apher Dial. 2025;29(2):269-275. doi:10.1111/1744-9987.14206
Smit W, Parikova A, Struijk DG, Krediet RT. The difference in causes of early and late ultrafiltration failure in peritoneal dialysis. Perit Dial Int. 2005;25 Suppl 3:S41-S45.
Nakazato Y, Yamaji Y, Oshima N, Hayashi M, Saruta T. Calcification and osteopontin localization in the peritoneum of patients on long-term continuous ambulatory peritoneal dialysis therapy. Nephrol Dial Transplant. 2002;17(7):1293-1303. doi:10.1093/ndt/17.7.1293
Korucu B, Akcay OF, Guz G. Calcium phosphate product in peritoneal dialysis: a risk factor for type I membrane failure? Nephrol Dial Transplant. 2021;36(Suppl 1):gfab101.0010. doi:10.1093/ndt/gfab101.0010
Downloads
Published
How to Cite
License
Copyright (c) 2025 İlker Atay, Berfu Korucu, Erhan Eröz, Mehmet Ası Oktan, Cihan Heybeli, Yelda Deligöz Bildacı, Caner Çavdar, Serpil Müge Değer

This work is licensed under a Creative Commons Attribution 4.0 International License.








