Prognostic Value of Systemic Immune Inflammation Index in Malignant Ischemic Stroke: A Study on Patient Selection and Timing of Surgical Decompression

SII in Malignant Ischemic Stroke

Abstract views: 95 / PDF downloads: 53




Decompressive craniectomy, ischemic infarct, malign cerebral edema, systemic immune inflammation index


Background: Ischemic stroke is a substantial health concern with long-term neurological consequences and economic implications. Inflammation worsens secondary brain injury, prompting the search for prognostic biomarkers. The optimal approach for treating malignant ischemic stroke, patient selection, and intervention timing remain intricate due to patient diversity.

Methods: We investigate the systemic immune inflammation index (SII) predictive value for surgical decompression timing and patient selection in malignant ischemic stroke. We include patients who underwent surgical decompression for ischemic stroke-induced malignant brain edema in the past five years. Retrospective data were collected, including demographics, history, laboratory results, imaging, and surgical details. SII was calculated using platelet, neutrophil, and lymphocyte counts. Descriptive statistics and multivariate regression models were used.

Results:  In this study involving 80 patients, we evaluated the impact of decompressive craniectomy on ischemic stroke outcomes. Patients were divided into the Decompression Group (n=39) and Non-Decompression Group (n=41). Gender distribution, hypertension, diabetes mellitus, atrial fibrillation, and hemorrhage occurrence showed no significant differences between the groups. However, the Decompression Group had higher NIHSS scores at presentation (18.1±4.6 vs. 14.8±4.7, P=0.02) and discharge (17±5 vs. 11.2±4, P=0.001). SII at presentation and control were significantly higher in the Decompression Group (P=0.04 and P=0.05, respectively). Hospitalization duration on the 10th day was longer in the Decompression Group (39.5±28.8 vs. 11.8±5.6, P=0.001).  

Conclusions: Our study examines SII's potential as a prognostic marker for surgical decompression timing and patient selection in malignant ischemic stroke. Despite limitations, we highlight the complex relationship between systemic inflammation, stroke severity, and post-surgical outcomes. Further research with larger cohorts must validate SII's utility and refine its application in ischemic stroke management. Continued investigation is crucial to establish SII's role as a predictive tool in guiding clinical decisions.


Koutsaliaris IK, Moschonas IC, Pechlivani LM, Tsouka AN, Tselepis AD. Inflammation, Oxidative Stress, Vascular Aging and Atherosclerotic Ischemic Stroke. Curr Med Chem. 2022;29(34):5496-5509. doi:10.2174/0929867328666210921161711

Candelario-Jalil E, Dijkhuizen RM, Magnus T. Neuroinflammation, Stroke, Blood-Brain Barrier Dysfunction, and Imaging Modalities. Stroke. 2022;53(5):1473-1486. doi:10.1161/STROKEAHA.122.036946

Pallesen LP, Barlinn K, Puetz V. Role of Decompressive Craniectomy in Ischemic Stroke. Front Neurol. 2019;9:1119. Published 2019 Jan 9. doi:10.3389/fneur.2018.01119

Cannarsa GJ, Simard JM. Decompressive Craniectomy for Stroke: Who, When, and How. Neurol Clin. 2022;40(2):321-336. doi:10.1016/j.ncl.2021.11.009

Beez T, Munoz-Bendix C, Steiger HJ, Beseoglu K. Decompressive craniectomy for acute ischemic stroke. Crit Care. 2019;23(1):209. Published 2019 Jun 7. doi:10.1186/s13054-019-2490-x

Gong P, Liu Y, Gong Y, et al. The association of neutrophil to lymphocyte ratio, platelet to lymphocyte ratio, and lymphocyte to monocyte ratio with post-thrombolysis early neurological outcomes in patients with acute ischemic stroke. J Neuroinflammation. 2021;18(1):51. Published 2021 Feb 20. doi:10.1186/s12974-021-02090-6

Sharma D, Spring KJ, Bhaskar SMM. Neutrophil-lymphocyte ratio in acute ischemic stroke: Immunopathology, management, and prognosis. Acta Neurol Scand. 2021;144(5):486-499. doi:10.1111/ane.13493

Öcal L, Keskin M, Cerşit S, et al. Systemic immune-inflammation index predicts in-hospital and long-term outcomes in patients with ST-segment elevation myocardial infarction. Coron Artery Dis. 2022;33(4):251-260. doi:10.1097/MCA.0000000000001117

Aydin C, Alpsoy Ş, Akyüz A, et al. Could the systemic immune-inflammation index be a predictor to estimate cerebrovascular events in hypertensive patients?. Blood Press Monit. 2022;27(1):33-38. doi:10.1097/MBP.0000000000000560

Powers WJ, Rabinstein AA, Ackerson T, et al. Guidelines for the Early Management of Patients With Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association [published correction appears in Stroke. 2019 Dec;50(12):e440-e441]. Stroke. 2019;50(12):e344-e418. doi:10.1161/STR.0000000000000211

Hofmeijer J, Kappelle LJ, Algra A, Amelink GJ, van Gijn J, van der Worp HB; HAMLET Investigators. Surgical decompression for space-occupying cerebral infarction (the Hemicraniectomy After Middle Cerebral Artery infarction With Life-threatening Edema Trial [HAMLET]):a multicentre, open, randomised trial. Lancet Neurol. 2009;8(4):326-33. doi:10.1016/S1474-4422(09)70047-X

Kim JY, Kawabori M, Yenari MA. Innate inflammatory responses in stroke: mechanisms and potential therapeutic targets. Curr Med Chem. 2014;21(18):2076-2097. doi:10.2174/0929867321666131228205146

Chen CC, Cho DY, Tsai SC. Outcome and prognostic factors of decompressive hemicraniectomy in malignant middle cerebral artery infarction. J Chin Med Assoc. 2007;70(2):56-60. doi:10.1016/S1726-4901(09)70302-8

Süner Hİ, Tanburoğlu A, Durdağ E, et al. Effect of decompressive hemicraniectomy in patients with acute middle cerebral artery infarction. Turk J Med Sci. 2021;51(4):2057-2065. Published 2021 Aug 30. doi:10.3906/sag-2011-66

Oliveira BDD, Lima FO, Homem HDC, Figueirêdo AA, Freire VMB, Maia Carvalho FM. Optic Nerve Sheath Diameter Detects Intracranial Hypertension in Acute Malignant Middle Cerebral Artery Infarction. J Stroke Cerebrovasc Dis. 2022;31(3):106276. doi:10.1016/j.jstrokecerebrovasdis.2021.106276

Khoshnam SE, Winlow W, Farzaneh M, Farbood Y, Moghaddam HF. Pathogenic mechanisms following ischemic stroke. Neurol Sci. 2017;38(7):1167-1186. doi:10.1007/s10072-017-2938-1

Tuttolomondo A. Ischemic Stroke Pathogenesis: Genetics, Epigenetics and Inflammation. Curr Pharm Des. 2020;26(34):4207-4208. doi:10.2174/138161282634200831110542

Nakamura K, Shichita T. Cellular and molecular mechanisms of sterile inflammation in ischaemic stroke. J Biochem. 2019;165(6):459-464. doi:10.1093/jb/mvz017

Jayaraj RL, Azimullah S, Beiram R, Jalal FY, Rosenberg GA. Neuroinflammation: friend and foe for ischemic stroke. J Neuroinflammation. 2019;16(1):142. Published 2019 Jul 10. doi:10.1186/s12974-019-1516-2

Dong X, Gao J, Su Y, Wang Z. Nanomedicine for Ischemic Stroke. Int J Mol Sci. 2020;21(20):7600. Published 2020 Oct 14. doi:10.3390/ijms21207600

Low A, Mak E, Rowe JB, Markus HS, O'Brien JT. Inflammation and cerebral small vessel disease: A systematic review. Ageing Res Rev. 2019;53:100916. doi:10.1016/j.arr.2019.100916

Dong X, Gao J, Zhang CY, Hayworth C, Frank M, Wang Z. Neutrophil Membrane-Derived Nanovesicles Alleviate Inflammation To Protect Mouse Brain Injury from Ischemic Stroke. ACS Nano. 2019;13(2):1272-1283. doi:10.1021/acsnano.8b06572

Kanazawa M, Ninomiya I, Hatakeyama M, Takahashi T, Shimohata T. Microglia and Monocytes/Macrophages Polarization Reveal Novel Therapeutic Mechanism against Stroke. Int J Mol Sci. 2017;18(10):2135. Published 2017 Oct 13. doi:10.3390/ijms18102135

Tabib A, Hindi I, Karbian N, Zelig O, Falach B, Mevorach D. Prothrombotic mechanisms in patients with congenital p.Cys89Tyr mutation in CD59. Thromb Res. 2018;168:67-77. doi:10.1016/j.thromres.2018.06.006

Lambertsen KL, Finsen B, Clausen BH. Post-stroke inflammation-target or tool for therapy?. Acta Neuropathol. 2019;137(5):693-714. doi:10.1007/s00401-018-1930-z

Shekhar S, Cunningham MW, Pabbidi MR, Wang S, Booz GW, Fan F. Targeting vascular inflammation in ischemic stroke: Recent developments on novel immunomodulatory approaches. Eur J Pharmacol. 2018;833:531-544. doi:10.1016/j.ejphar.2018.06.028

Zhang Y, Xing Z, Zhou K, Jiang S. The Predictive Role of Systemic Inflammation Response Index (SIRI) in the Prognosis of Stroke Patients. Clin Interv Aging. 2021;16:1997-2007. Published 2021 Dec 1. doi:10.2147/CIA.S339221

Orhan AL, Şaylık F, Çiçek V, Akbulut T, Selçuk M, Çınar T. Evaluating the systemic immune-inflammation index for in-hospital and long-term mortality in elderly non-ST-elevation myocardial infarction patients. Aging Clin Exp Res. 2022;34(7):1687-1695. doi:10.1007/s40520-022-02103-1

Zhou Y, Dai M, Zhang Z. Prognostic Significance of the Systemic Immune-Inflammation Index (SII) in Patients With Small Cell Lung Cancer: A Meta-Analysis. Front Oncol. 2022;12:814727. Published 2022 Feb 4. doi:10.3389/fonc.2022.814727

Sha L, Xu T, Ge X, Shi L, Zhang J, Guo H. Predictors of death within 6 months of stroke onset: A model with Barthel index, platelet/lymphocyte ratio and serum albumin. Nurs Open. 2021;8(3):1380-1392. doi:10.1002/nop2.754




How to Cite

Gediz, T., & Sarıönder Gencer, E. (2023). Prognostic Value of Systemic Immune Inflammation Index in Malignant Ischemic Stroke: A Study on Patient Selection and Timing of Surgical Decompression: SII in Malignant Ischemic Stroke. Journal of European Internal Medicine Professionals, 1(4), 138–143.



Original Article